0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Intelligent fault diagnosis of hoisting systems under complex working conditions using deep graph convolutional generative adversarial networks with limited data

Auteur(s): ORCID (Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, China)
ORCID (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China)
ORCID (School of Mechanical Engineering, Southeast University, Nanjing, China)
(School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China)
Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring
DOI: 10.1177/14759217241279789
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/14759217241279789.
  • Informations
    sur cette fiche
  • Reference-ID
    10806183
  • Publié(e) le:
    10.11.2024
  • Modifié(e) le:
    10.11.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine