Integrating Drone Imagery and AI for Improved Construction Site Management through Building Information Modeling
Auteur(s): |
Wonjun Choi
Seunguk Na Seokjae Heo |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 27 mars 2024, n. 4, v. 14 |
Page(s): | 1106 |
DOI: | 10.3390/buildings14041106 |
Abstrait: |
In the rapidly advancing field of construction, digital site management and Building Information Modeling (BIM) are pivotal. This study explores the integration of drone imagery into the digital construction site management process, aiming to create BIM models with enhanced object recognition capabilities. Initially, the research sought to achieve photorealistic rendering of point cloud models (PCMs) using blur/sharpen filters and generative adversarial network (GAN) models. However, these techniques did not fully meet the desired outcomes for photorealistic rendering. The research then shifted to investigating additional methods, such as fine-tuning object recognition algorithms with real-world datasets, to improve object recognition accuracy. The study’s findings present a nuanced understanding of the limitations and potential pathways for achieving photorealistic rendering in PCM, underscoring the complexity of the task and laying the groundwork for future innovations in this area. Although the study faced challenges in attaining the original goal of photorealistic rendering for object detection, it contributes valuable insights that may inform future research and technological development in digital construction site management. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
13.14 MB
- Informations
sur cette fiche - Reference-ID
10774012 - Publié(e) le:
29.04.2024 - Modifié(e) le:
05.06.2024