0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Instant bridge visual inspection using an unmanned aerial vehicle by image capturing and geo-tagging system and deep convolutional neural network

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 4, v. 20
Page(s): 147592172093238
DOI: 10.1177/1475921720932384
Abstrait:

The structural condition of bridges is generally assessed using manual visual inspection. However, this approach consumes labor, time, and capital, and produces subjective results. Therefore, industries today are using automated visual inspection approaches, which quantify and localize damages such as cracks using robots and computer vision. This paper proposes an instant damage identification and localization approach that uses an image capturing and geo-tagging system and deep convolutional neural network for crack detection. The image capturing and geo-tagging allows the geo-tagging of three-dimensional coordinates and camera pose data with bridge inspection images; the deep convolutional neural network is trained for automated crack identification. The damages extracted by the convolutional neural network are instantly transformed into a global bridge damage map, with georeferencing data acquired using the image capturing and geo-tagging. This method is experimentally validated through a lab-scale test on a wall and a field test on a bridge to demonstrate the performance of the instant damage map.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921720932384.
  • Informations
    sur cette fiche
  • Reference-ID
    10562457
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    09.07.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine