Innovative Design Techniques for Sinusoidal-Web Beams: A Reliability-Based Optimization Approach
Auteur(s): |
Imre Cserpes
Muayad Habashneh János Szép Majid Movahedi Rad |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 27 mars 2024, n. 4, v. 14 |
Page(s): | 1051 |
DOI: | 10.3390/buildings14041051 |
Abstrait: |
Existing studies often rely on deterministic numerical analyses for structural models. However, test results consistently highlight uncertainties, particularly in variables such as magnitude of the applied load, geometrical dimensions, material randomness, and limited experiential data. As a response, researchers have increasingly turned their attention to probabilistic design models, recognizing their crucial role in accurately predicting structural performance. This study aims to integrate reliability-based analysis into the numerical modeling of sinusoidal-web steel beams. Two sinusoidal-web beams are considered. The web and the flange thicknesses, in addition to the magnitude of the applied load, are treated as random variables with mean values and standard deviations. Notably, the study demonstrates the efficiency of the reliability index as a governing limit in the analysis process. A detailed comparison between deterministic and probabilistic designs of sinusoidal-web beams is conducted, focusing on the impact of introducing the nature of randomness. Therefore, this study’s results deepen our understanding of how uncertainties significantly influence deformations and stresses. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.41 MB
- Informations
sur cette fiche - Reference-ID
10774008 - Publié(e) le:
29.04.2024 - Modifié(e) le:
05.06.2024