0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Innovative Approach to Dam Deformation Analysis: Integration of VMD, Fractal Theory, and WOA-DELM

Auteur(s): ORCID

ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , v. 2024
Page(s): 1-15
DOI: 10.1155/2024/1710019
Abstrait:

This paper introduces a novel and comprehensive model for the analysis of dam deformation trends, integrating the variational mode decomposition (VMD) method, fractal theory, and the whale optimization algorithm (WOA) to refine the deep extreme learning machine (DELM) model. This integration allows for a meticulous denoising process through VMD, effectively isolating pertinent signal characteristics from noise and measurement interference. Following this, fractal theory is utilized to conduct an in-depth qualitative analysis of the denoised data, capturing intricate patterns within the deformation trends. The model further evolves with the application of WOA to optimize the DELM model, thereby facilitating an integrated approach that merges qualitative insights with quantitative analysis. The efficacy of this advanced model is demonstrated through a case study, highlighting its capability to deliver accurate and reliable predictions that are in harmony with practical engineering scenarios. This research not only offers a robust framework for analyzing dam deformation trends but also sets a new standard in the field, providing a new solution for assessing structural integrity in hydrological engineering.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/1710019.
  • Informations
    sur cette fiche
  • Reference-ID
    10784493
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine