Influence of Tunneling in Cohesionless Soil for Different Tunnel Geometry and Volume Loss under Greenfield Condition
Auteur(s): |
Raja Kanagaraju
Premalatha Krishnamurthy |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-11 |
DOI: | 10.1155/2020/1946761 |
Abstrait: |
This paper presents the numerical analysis of settlement to profile the vulnerable zone or influence zone due to tunneling activities in cohesionless deposits for free field or Greenfield conditions. The analysis considers the factors like saturated density (γsat), unsaturated density (γunsat), angle of shearing resistance (φ), deformation modulus (ES), volume loss (VL), and the support pressure of the shield head at the tunnel face. The obtained results using a finite element program (FEM) PLAXIS 3D are compared with measured and predicted surface settlement using field measuring instruments, and analytical and empirical solution show a reasonable agreement and are found to be conservative. From literature, for Greenfield condition the ground settlement equal to 10 mm is taken as the minimum value to map the influencing zone considering the fact that the structure which lies beyond this zone would undergo negligible settlement. Settlement trough and 10 mm settlement contour characteristics are presented for different tunnel sizes placed at the same depth and the same tunnel size placed at different depths, respectively. Various influencing zones are arrived for the sandy grounds of different denseness based on the parametrical studies involving parameters such as tunnel size “D,” tunnel axis depth “z,” and volume loss “VL.” |
Copyright: | © Raja Kanagaraju and Premalatha Krishnamurthy et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.49 MB
- Informations
sur cette fiche - Reference-ID
10422615 - Publié(e) le:
26.05.2020 - Modifié(e) le:
02.06.2021