0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Influence of the Process of Synthesis of Zeolites from Volcanic Ash in Its Synergistic Action as a Flame-Retardant for Polypropylene Composites

Auteur(s): ORCID





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 12
Page(s): 24
DOI: 10.3390/buildings12010024
Abstrait:

In this research, the influence of natural zeolites obtained from the volcanic ash of the Ubinas volcano has been studied as synergistic agents in a flame-retardant system (composed of ammonium polyphosphate, pentaerythritol, and polypropylene). Four zeolites were synthesized from volcanic ash, including those that had been calcined and those that had not. These were then placed in an alkaline solution at three synthesis temperatures. Zeolites were characterized through X-ray diffraction, specific surface area by nitrogen adsorption analysis (Brunauer–Emmett–Teller) and scanning electron microscopy. Polypropylene matrix composites were prepared with ammonium polyphosphate, pentaerythritol and zeolites at 1, 5 and 9%. Its thermal stability and fire resistance were evaluated by thermogravimetric analysis, limiting oxygen index, vertical burning test and cone calorimeter and its morphological structure by scanning electron microscopy. It was determined that the synthesis temperature and the use of calcined and without calcined volcanic ash have an influence on the characteristics of the zeolites and on its synergistic action.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10648364
  • Publié(e) le:
    07.01.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine