Influence of the Heating System on the Indoor Environmental Quality—Case Study
Auteur(s): |
Richard Nagy
Eva Kridlova Burdova Katarína Harčárová Silvia Vilcekova |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 31 juillet 2022, n. 8, v. 12 |
Page(s): | 1088 |
DOI: | 10.3390/buildings12081088 |
Abstrait: |
This aim of this paper is to explore the specific indoor environmental quality factors under different heating conditions in a meeting room of an administrate building located in Kosice. In terms of thermal comfort, a system with radiant ceiling heating provides more favorable results. Low relative humidity was recorded for both heating systems, which could be due to insufficient air conditioning settings. The results of measuring CO₂ concentrations were almost identical for both systems and did not exceed the recommended limit value of 1000 ppm. The increase in CO₂ concentrations was mainly related to the presence of employees in the monitored room. On none of the monitoring days, whether in the case of a mechanical heating system or a radiant ceiling heating system, the average 24 h concentration of PM10 did not exceed the legally permissible limit of 50 µg/m³. The presence of selected volatile organic compounds in the room has not been demonstrated due to effective ventilation by air conditioning. The results of the evaluation were comparable and smaller fluctuations in values can be attributed to other factors, such as the presence of persons in the monitoring room or the overall heating as well as ventilation and air conditioning (HVAC) systems. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.94 MB
- Informations
sur cette fiche - Reference-ID
10688517 - Publié(e) le:
13.08.2022 - Modifié(e) le:
10.11.2022