Influence of Maximum Particle Diameter on the Mechanical Behavior of Soil-Rock Mixtures
Auteur(s): |
Zhuoling He
Junyun Zhang Tao Sun |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-9 |
DOI: | 10.1155/2020/8850221 |
Abstrait: |
With the steady development of the development of the western region in China, the construction of mountain highways has developed rapidly, and the soil-rock mixed filler, as an excellent filler, is widely used in the subgrade filling of mountain highways. Unlike ordinary fine-grained soil, the source of the soil-rock mixtures (S-RMs) is not unique, and the particle size difference is large and the water content is not uniform, resulting in very complicated mechanical properties. But the current highway embankment codes are still mainly established on the fine-grained soil. It is not fully applicable to soil-rock filled embankment. Based on soil-rock filled embankment engineering practice, this research uses a large-scale direct shear test to research the mechanical characteristics of the S-RMs with different maximum particle diameters. According to the large-scale direct shear test of S-RMs with different maximum particle diameters, the shear displacement vs shear stress curve, shear dilation, and strength characteristics with maximum particle diameter were analyzed. Results demonstrate that whether secondary hardening occurs mainly depends on the normal stress and the maximum particle diameter of the filler. At different maximum particle diameters, the horizontal displacement vs vertical displacement curves of the S-RMs can be roughly divided into continuous shearing and beginning of shearing and quick dilation. And the shear strength increases with the increase of the maximum particle diameter. Moreover, the cohesion decreases first and then increases with the increase of the maximum particle diameter, and the internal friction angle increases with the increase of the maximum particle diameter. Therefore, some RBs with large particle diameter added to filler can effectively improve the shear strength of the S-RMs, which may be valuable for realistic engineering. |
Copyright: | © Zhuoling He et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.79 MB
- Informations
sur cette fiche - Reference-ID
10435090 - Publié(e) le:
19.09.2020 - Modifié(e) le:
02.06.2021