Influence of Long Boreholes Layout and Drilling Length on Gas Drainage Based on Multifield Coupling Model of Gas-Bearing Coal
Auteur(s): |
Renjun Feng
|
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-16 |
DOI: | 10.1155/2021/1473769 |
Abstrait: |
Gas drainage through long seam boreholes is an effective method to prevent gas disasters in coal mines. In this paper, a multifield coupling model of gas migration in gas-bearing coal was first established. Then, a quantitative characterization method of gas drainage effect was put forward. Finally, the extraction effect of long boreholes was obtained under different layouts and drilling lengths. The research results show that, under the arrangement of long boreholes along the seam, the gas pressure around the borehole decreases significantly with the extraction time. There is no extraction blank in the middle of the working face. However, it is easy to cause uneven gas drainage in the combined arrangement of the long boreholes along the seam and the penetrating boreholes. Furthermore, it is found that the drainage volume of the long boreholes along the seam is similar to that of the joint layout under the same drainage time. As the length of the borehole increases, the influencing range of gas drainage increases. When the borehole lengths are 150 m and 240 m, the drainage volumes are about 1.31 and 2.50 times that of the 90 m boreholes, respectively. The research achievements could provide a specific reference for the layout of long boreholes along the bedding and the determination of reasonable parameters for gas drainage on site. |
Copyright: | © Renjun Feng et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.75 MB
- Informations
sur cette fiche - Reference-ID
10638287 - Publié(e) le:
30.11.2021 - Modifié(e) le:
02.12.2021