0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

The influence of frequency content on the performance of artificial neural network–based damage detection systems tested on numerical and experimental bridge data

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 3, v. 20
Page(s): 147592172092432
DOI: 10.1177/1475921720924320
Abstrait:

The method herein proposed provides a novel perspective about data processing within structural health monitoring, which is essential for automated real-time monitoring and assessment of civil engineering structures. The low- and high-frequency contents of the forced vibration response of a structure are used to train and test artificial neural networks for the purpose of damage detection. In the context of several damage scenarios, the different versions of the networks are compared with each other with the aim of verifying which are the most efficient regarding novelty detection (one-class classification). The data related with the high-frequency response showed to contain more useful information for the proposed damage detection algorithm, when compared with the low-frequency response data (typically modal). In view of that, high frequencies should be given more attention in future research about their application in connection with structural health monitoring systems.

License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10562441
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine