0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Influence of Convection Term on Temperature Field during Soil Freezing

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 12
Page(s): 2183
DOI: 10.3390/buildings12122183
Abstrait:

In recent years, the numerical model of frozen soil has mainly focused on the water-heat equation of unsaturated soil, which is of great significance to predicting engineering stability in frozen soil areas. In these numerical models, the change of freezing temperature is usually ignored, and 0 °C is often used as the freezing condition. In addition, most equations only consider the effect of latent heat released during water freezing on the frozen soil and ignore the effect of high-temperature water on the heat transfer of frozen soil when unfrozen water migrates to the frozen zone. Therefore, there will be deviations under long-time simulation. At the same time, due to excessive attention to the moisture field and neglect of the selection of the temperature field, there is no clear conclusion on when to choose the heat transfer equation with the convection term. The equation in this paper considered the change of freezing temperature under different initial saturation conditions and the convection effect during moisture migration. Through COMSOL 5.5 software simulation, they were combined with the experiment to verify. Three different hydrothermal equations were selected to analyze the effects of latent heat and the effects of convection on the temperature field under different initial saturation conditions. The results show that the convection term plays an essential role in the heat transfer equation for unsaturated soil with high initial saturation. Additionally, the frost heave occurs mainly above the ice front interface. This study provides a reference for when to choose the heat transfer equation with convective terms and can provide help for the construction and prediction of frozen soil in the future.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10699841
  • Publié(e) le:
    10.12.2022
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine