• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Individual Building Growth Model Based on Column Grid Cellular Automata

Auteur(s):

Médium: article de revue
Langue(s): en 
Publié dans: The Open Construction and Building Technology Journal, , n. 1, v. 9
Page(s): 39-45
DOI: 10.2174/1874836801509010039
Abstrait:

Architectural generative design has gained an overwhelming contemporary popularity when it comes to the digital architecture research. This paper proposes a model which mimics the growth of plants. Take the growth of a plant for example, branches grow before leaves. Similarly, the inward streamlines initiated from various entrances and exits within the boundaries of individual building are like branches, so are the functional areas to leaves. With the help of this idea, a growth model framework based on flat column grid cellular automata has been established which develops organic integration between CA model, site column grid and spatial database model. This model not only simulates the expansion of architectural space, but also reflects the building spatial variation of internal structure. It is a space-time dynamic model with basic features of complex systems and has great practical reference value for architects to understand the evolution process of architectural space. To help designers improve the efficiency of project decision, this paper uses genetic algorithm to obtain the positioning of function area, so as to effectively simulate the thought process of a successful architect.

Copyright: © 2015 Gongyu Hou, Xin Xu
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10381431
  • Publié(e) le:
    22.11.2019
  • Modifié(e) le:
    22.11.2019