0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s): (Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA)
ORCID (Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA)
(Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA)
Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 2, v. 8
Page(s): 35
DOI: 10.3390/infrastructures8020035
Abstrait:

One of the most effective ways to increase the longevity of pavement structures is through the integration of geosynthetic reinforcement. Geosynthetics are synthetic materials such as geotextiles, geogrids, or geocomposites that are added to the interface between the subgrade and the base layer of a pavement structure. To evaluate the effect of various parameters on the structural benefits of geosynthetic reinforcement on the pavement structure of low-volume traffic flexible pavements, a finite element (FE) study was performed using the ABAQUS program. These parameters included the geosynthetic type, geosynthetic tensile stiffness, subgrade stiffness, and base thickness. The FE rutting curves for the 100 cycles were calibrated using the mechanistic–empirical (M-E) transfer functions, which were then used to calculate the long-term rutting curves. The traffic benefit ratio (TBR) was initially calculated based on the calibrated rutting curves for each pavement layer. The calculated TBRs were then used as an input in AASHTOWare to compute the base effective resilient modulus (MR-eff) and the factor of base course reduction (BCR). The results showed that adding one layer of geosynthetics enhanced the rutting performance of pavement structures significantly (up to 8.9 in TBR, 322% in MR-eff, and 64% in BCR). Geogrids showed higher benefits than geotextiles due to the interlocking between base aggregates and geogrid aperture. The values of TBR, MR-eff, and BCR increase with the increasing tensile stiffness of the geosynthetics and the rutting target and with the decreasing subgrade stiffness. The results also demonstrated peak values of TBR, MR-eff, and BCR for a base thickness of 25.4 cm.

Copyright: © 2023 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10722736
  • Publié(e) le:
    22.04.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine