In-plane Vibration of Circular Arches With Varying Cross-sections
Auteur(s): |
Ekrem Tufekci
Oznur Ozdemirci Yigit |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | International Journal of Structural Stability and Dynamics, février 2013, n. 1, v. 13 |
Page(s): | 1350003 |
DOI: | 10.1142/s021945541350003x |
Abstrait: |
The in-plane free vibration of circular arches with continuously varying cross-sections is studied by means of the exact solution. The exact solution can be obtained only for a circular arch with constant cross-section. As an approximation, the circular arch with varying cross-sections is divided into a number of arch elements with constant cross-sections. The cross-section of each arch element is determined by averaging the upper and lower cross-sections. Then, the exact solution of free vibrations for each arch element can be obtained by using the initial value method. The axial extension, transverse shear deformation and rotatory inertia effects are included in the analysis. As the number of the arch elements increases, the fast convergence of the frequencies to those of the original arch is observed. Clamped–clamped (CC), hinged–hinged (HH), hinged–clamped (HC), clamped–free (CF) and free–free (FF) boundary conditions are studied for different opening angles, taper types and taper ratios. A detailed parametric study is performed, by which the mode transition phenomenon is observed. The results obtained are compared with those available in the literature. |
- Informations
sur cette fiche - Reference-ID
10352864 - Publié(e) le:
14.08.2019 - Modifié(e) le:
14.08.2019