0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

In-Plane Elastic Buckling Behavior of Circular Tied Cable-Arches

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 8, v. 17
Page(s): 1750088
DOI: 10.1142/s0219455417500882
Abstrait:

Cable-arch structures, having features of the flexibility of cable and rigidity of arch, have often been used in structural and bridge engineering. It is important to fully understand the behavior of such a structure under various conditions. For this purpose, in this paper, linear and nonlinear elastic buckling analysis of four cable-arch related structures, including tied cable-arch structure, pure arch, tied arch and cable-arch, were conducted using the finite element methods under different boundary and load conditions with the stability of these structures compared. Furthermore, the parametric analysis was carried out to investigate the influence of numbers and inclined angles of hangers and cables, materials of cables and stiffness of tie beam on the buckling behavior of tied cable-arch. The results indicate that the stability of pure arch and tied arch can be enhanced by anchoring cables on the arch rib due to the increase in stiffness. Moreover, the weaker the stiffness of an arch, the greater the cable’s contribution to structural stiffness. The stability of a tied cable-arch is quite sensitive to the inclined angle of hangers and cables, the number and materials of cables, and tie bar, but not to the fracture of two hangers. The study gives us a complete understanding of the elastic buckling behavior of circular tied cable-arch structures.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455417500882.
  • Informations
    sur cette fiche
  • Reference-ID
    10352343
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019