Improving the Interfacial Bond Properties of the Carbon Fiber Coated with a Nano-SiO2 Particle in a Cement Paste Matrix
Auteur(s): |
Gwang-Hee Heo
Jong-Gun Park Ki-Chang Song Jong-Ho Park Hyung-Min Jun Zhongguo John Ma |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-18 |
DOI: | 10.1155/2020/8838179 |
Abstrait: |
To improve the interfacial bond properties of the carbon fiber coated with a nano-SiO₂ particle in a cement paste matrix, the present study proposed a method of coating nano-SiO₂ particles on the surface of the carbon fiber by the chemical reaction of a silane coupling agent (glycidoxypropyltrimethoxysilane, GPTMS) and colloidal nano-SiO₂ sol in an alkaline environment. To verify whether a nano-SiO₂ particle was effectively modified on the surface of the carbon fiber, the surface morphology, chemical composition, and chemical structure were characterized and analyzed by several techniques such as the scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), and Fourier-transform infrared spectroscopy (FT-IR). Nano-SiO₂ particles were entirely covered and uniformly distributed on the surface of the carbon fiber, resulting in the formation of a thin layer of nano-SiO₂ particles. A thin layer of nano-SiO₂ particles reacted with Ca(OH)2 to form a calcium-silicate-hydrate (C-S-H) gel, which is most helpful to increase the form between the fiber and the matrix. In addition, a pull-out test of the tow carbon fibers was performed to verify the effect of the new surface modification method on the interfacial bond properties of the carbon fiber embedded in the cement paste matrix. The experimental results showed that the frictional bond strength of the carbon fiber coated with a nano-SiO₂ particle was significantly increased compared to the plain carbon fiber. These results were expected to improve the interfacial bonding force of hardened cement paste from the formation of the C-S-H gel produced through the chemical reaction of nano-SiO₂ particles coated on the surface of the carbon fiber with Ca(OH)2. In particular, it was confirmed that the carbon fiber-reinforced cement paste (CFRCP) specimens coated with a nano-SiO₂ particle and silica fume which replaced 10 wt.% of cement by mass showed the highest pull-out resistance performance at 28 days of age. The new surface modification method developed in this study can be very beneficial and helpful in improving the interfacial bond properties of CFRCP. |
Copyright: | © Gwang-Hee Heo et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
6.76 MB
- Informations
sur cette fiche - Reference-ID
10444096 - Publié(e) le:
05.10.2020 - Modifié(e) le:
02.06.2021