0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Improvement of Stop-Hole Method on Fatigue-Cracked Steel Plates by Using High-Strength Bolts and CFRP Strips

Auteur(s): ORCID
ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/6632212
Abstrait:

Steel bridges are extremely damaged by fatigue subjected to cycling load. Therefore, it is often necessary to put forward effective reinforcement to strengthen steel structures during the daily maintenance. In this study, two repairing methods of high-strength bolts and high-modulus CFRP strips on the basis of stop-hole repair method were introduced, respectively, to investigate fatigue improvement of cracked steel plates. First of all, numerical analysis was conducted to predict the repair efficiency and investigate the optimal parameters of each method. Variables studied were stop-hole diameter, pretightening force of bolt, and size of CFRP patch. Subsequently, a total of 12 specimens were tested to study the repairing efficiency of cracked steel plates with various strengthening methods through cyclic loading. At the same time, the failure mode and fatigue life were analyzed to present the improvement of fatigue performance. In addition, the experimental results were compared against the S-N curves of this strengthened fatigue detail. The outcomes of this study revealed that an improvement in the influence of fatigue-crack repair with the adoption of these two strengthening methods was evident. Numerical results showed that the addition of these materials could significantly diminish stress concentration factor around hole edge and improve their fatigue performance in comparison with only stop-hole method. Fatigue test results indicated that the crack initiation life of specimens repaired by stop-hole method was more than 20 times that of the unrepaired specimens. The high-strength bolt reinforced stop hole and CFRP patched stop hole can extend the crack initiation life by 9 and 8 times, respectively, in contrast to control specimens with sole stop-hole method. Finally, it was demonstrated that repairing damaged steel plates with stop-hole method alone was not enough to satisfy the fatigue strength requirements of various countries. But the fatigue strength category of damaged steel plates after further repairing with high-strength bolts and high-elastic-modulus CFRP, respectively, was higher than category A of AASHTO.

Copyright: © 2021 Xu Jiang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10578417
  • Publié(e) le:
    02.03.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine