0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Impact of Randomized Soil Properties and Rock Motion Intensities on Ground Motion

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2024
Page(s): 1-12
DOI: 10.1155/2024/9578058
Abstrait:

Seismic site response is inevitably influenced by natural variability of soil properties and anticipated earthquake intensity. This study presents the influence of variability in shear wave velocity (Vs) and amplitude of input rock motion on seismic site response analysis. Monte Carlo simulations were employed to randomize the Vs profile for different scenarios. A series of 1-D equivalent linear (EQL) seismic site response analyses were conducted by combining the randomized Vs profile with different levels of rock motion intensities. The results of the analyses are presented in terms of surface spectral acceleration, amplification factors (AFs), and peak ground acceleration (PGA). The mean and standard deviation of these parameters are thoroughly discussed for a wide range of randomized Vs profile, number of Vs randomizations, and intensities of input rock motions. The results demonstrate that both the median PGA and its standard deviations across different number of Vs profile realization exhibit a slight variation. As few as twenty Vs profile realizations are sufficient to compute reliable response parameters. Both rock motion intensity and standard deviation of Vs variability cause significant variation in computed surface parameters. However, the variability in the number of records used to conduct site response has no significant impact on ground response if the records closely match the target spectrum. Incorporating the multiple sources of variabilities can reduce uncertainty when conducting ground response simulations.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/9578058.
  • Informations
    sur cette fiche
  • Reference-ID
    10786139
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine