0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Impact of PEG400–Zeolite Performance as a Material for Enhancing Strength of the Mechanical Properties of LECA/Foamed Lightweight Concrete

Auteur(s):


ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 9, v. 9
Page(s): 149
DOI: 10.3390/infrastructures9090149
Abstrait:

A versatile building material, foamed concrete is made of cement, fine aggregate, and foam combined with coarse aggregate. This study provides a description of how constant coarse aggregate replacement (50%) of LECA and foamed concrete, which are lightweight concrete types, by zeolite as a filler and PEG-400 as a plasticizer, water retention agent, and strength enhancer affect the mechanical properties of the cement. A study that examined the characteristics of cellular lightweight concrete in both its fresh and hardened forms was carried out for both foamed concrete and LECA concrete. In order to do this, a composite of zeolite and polyethylene glycol 400 was made using the direct absorption method, and no leakage was seen. Zeolite was loaded to a level of 10% and 20% of the total weight in cement, while 400 g/mol PEG was used at levels of 1%, 1.5%, and 2% of the cement’s weight. Various mixtures having a dry density of 1250 kg/m3 were produced. Properties like dry density, splitting tensile strength, and compressive strength were measured. An increase in the amount of PEG400–zeolite was seen to lower the workability, or slump, of both foamed and LECA concrete, while the replacement of aggregate by zeolite resulted in an exponential drop in both compressive and flexural strengths.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10800587
  • Publié(e) le:
    23.09.2024
  • Modifié(e) le:
    23.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine