Impact of Internal and External Landscape Patterns on Urban Greenspace Cooling Effects: Analysis from Maximum and Accumulative Perspectives
Auteur(s): |
Lujia Tang
Qingming Zhan Huimin Liu Yuli Fan |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 18 février 2025, n. 4, v. 15 |
Page(s): | 573 |
DOI: | 10.3390/buildings15040573 |
Abstrait: |
Urban greenspace is an effective strategy to mitigate the urban heat island (UHI) effect. While its cooling effects are well-established, uncertainties remain regarding the combined impact of internal and external landscape patterns, particularly the role of morphological spatial patterns. Taking 40 urban greenspaces in Wuhan as the sample, this study quantified cooling effects from maximum and accumulative perspectives and investigated the impacts of internal and external landscape patterns. First, using land surface temperature (LST) data, four cooling indexes—greenspace cooling area (GCA), cooling efficiency (GCE), cooling intensity (GCI), and cooling gradient (GCG)—were quantified. Then, the relationships between these indexes and landscape patterns, including scale and landscape composition, morphological spatial pattern, and surrounding environmental characteristics, were investigated by correlation analysis and multiple stepwise regression. The results showed that the cooling effects of greenspace varied across different perspectives. Both greenspace area and perimeter exerted non-linear impacts on cooling effects, and morphological spatial pattern significantly influenced cooling effects. Core proportion was positively correlated with cooling effects, with an optimal threshold of 55%, whereas bridge and branch proportions had negative impacts. External landscape patterns, particularly the proportion of impervious surfaces and building coverage, also affected cooling effects. Additionally, cluster analysis using Ward’s system clustering method revealed five cooling bundles, indicating that urban greenspaces with diverse cooling needs exhibited different cooling effects. This study offers valuable insights for optimizing urban greenspace design to enhance cooling effects and mitigate UHI. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
19.94 MB
- Informations
sur cette fiche - Reference-ID
10820877 - Publié(e) le:
11.03.2025 - Modifié(e) le:
11.03.2025