0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Impact of ground-motion duration on nonlinear structural performance: Part II: site- and building-specific analysis

Auteur(s): ORCID

ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Earthquake Spectra, , n. 2, v. 39
Page(s): 860-888
DOI: 10.1177/87552930231155506
Abstrait:

This study’s Part I proved that ground-motion duration could play an important role when assessing the nonlinear structural performance of case-study inelastic single degree-of-freedom systems. However, quantifying duration effects in many practical/more realistic engineering applications is not trivial, given the difficulties in decoupling duration from other ground-motion characteristics. This study’s Part II, introduced in this article, explores the impact of duration on nonlinear structural performance by numerically simulating the structural response of realistic case-study reinforced concrete bare and infilled building frames. Advanced computational models incorporating structural components’ cyclic and in-cycle strength and stiffness deterioration, and destabilizing [Formula: see text] effects are used. The proposed methodology relies on the generalized conditional intensity measure approach to select ground motions. This allows selecting records consistent with the seismic hazard at a target site, both in terms of spectral shape and duration. Those are employed as input to cloud-based nonlinear structural response analyses. Variance analysis is used to quantify the impact of duration on structural response. Furthermore, vector-valued fragility and vulnerability models alternatively using peak- and cumulative-based engineering demand parameters are derived. Results show that higher damage/loss estimates can be attained as ground-motion duration increases. Relative differences up to 44% are found in fragility median values for a pre-code reinforced concrete infilled frame when comparing scalar and vector-valued fragility models conditioned on average pseudo-spectral acceleration and significant durations up to 35 s.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/87552930231155506.
  • Informations
    sur cette fiche
  • Reference-ID
    10777214
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine