0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Impact of Derived Features from the Controlled Environment Agriculture Scenarios on Energy Consumption Prediction Model

Auteur(s):





ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 13
Page(s): 250
DOI: 10.3390/buildings13010250
Abstrait:

The high energy consumption CEA building brings challenges to the management of the energy system. An accurate energy consumption prediction model is necessary. Although there are various prediction methods, the prediction method for the particularity of CEA buildings is still a gap. This study proposes some derived features based on the CEA scenarios to improve the accuracy of the model. The study mainly extracts the time series and logical features from the agricultural calendar, the botanical physiological state, building characteristics, and production management. The time series and logical features have the highest increase of 2.8% and 3.6%, respectively. In addition, four automatic feature construction methods are also used to achieve varying degrees of influence from −9% to 8%. Therefore, the multiple feature extraction and feature construction methods proposed in this paper can effectively improve the model performance.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10712742
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine