0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Image Retrieval for Local Architectural Heritage Recommendation Based on Deep Hashing

Auteur(s):


ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 6, v. 12
Page(s): 809
DOI: 10.3390/buildings12060809
Abstrait:

Propagating architectural heritage is of great significance to the inheritance and protection of local culture. Recommendations based on user preferences can greatly benefit the promotion of local architectural heritage so as to better protect and inherit historical culture. Thus, a powerful tool is necessary to build such a recommendation system. Recently, deep learning methods have proliferated as a means to analyze data in architectural domains. In this paper, based on a case study of Jiangxi, China, we explore a recommendation system for the architectural heritage of a local area. To organize our experiments, a dataset for traditional Chinese architecture heritage is constructed and a deep hashing retrieval method is proposed for the recommendation task. By utilizing a data fine-tuning strategy, our retrieval method can realize high-accuracy recommendation and break the model training restriction caused by insufficient data on local architectural heritage. Furthermore, we analyze the retrieval answers and map the data into a two-dimensional space to reveal the relationships between different architectural heritage categories. An image-to-location application is also provided for a better user experience.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10679535
  • Publié(e) le:
    17.06.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine