• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Image Processing-Based Spall Object Detection Using Gabor Filter, Texture Analysis, and Adaptive Moment Estimation (Adam) Optimized Logistic Regression Models

Auteur(s):
Médium: article de revue
Langue(s): en 
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-16
DOI: 10.1155/2020/8829715
Abstrait:

This study aims at proposing a computer vision model for automatic recognition of localized spall objects appearing on surfaces of reinforced concrete elements. The new model is an integration of image processing techniques and machine learning approaches. The Gabor filter supported by principal component analysis and k-means clustering is used for identifying the region of interest within an image sample. The binary gradient contour, gray level co-occurrence matrix, and color channels’ statistical measurements are employed to compute the texture of the extracted region of interest. Based on the computed texture-based features, the logistic regression model trained by the state-of-the-art adaptive moment estimation (Adam) is utilized to establish a decision boundary that delivers predictions on the status of “nonlocalized spall” and “localized spall.” Experimental results demonstrate that the newly developed model is able to achieve good detection accuracy with classification accuracy rate = 85.32%, precision = 0.86, recall = 0.79, negative predictive value = 0.85, and F1 score = 0.82. Thus, the proposed computer vision model can be helpful to assist decision makers in the task of the periodic survey of structure heath condition.

Copyright: © Nhat-Duc Hoang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10526026
  • Publié(e) le:
    11.12.2020
  • Modifié(e) le:
    19.02.2021