0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Identification of influencing factors on bridge damages using Bayesian network

Auteur(s): (Engineer, Nippon Engineering Consultants Co., Ltd. 300 Kandaneribei‐cho, Chiyoda‐ku Tokyo 101‐0022 Japan)
(Professor, Graduate School of Engineering, Nagasaki University 1‐14 Bunkyo‐machi, Nagasaki City Nagasaki 852‐8521 Japan)
(Associate Professor, Graduate School of Engineering, Nagasaki University 1‐14 Bunkyo‐machi, Nagasaki City Nagasaki 852‐8521 Japan)
Médium: article de revue
Langue(s): anglais
Publié dans: ce/papers, , n. 5, v. 6
Page(s): 389-394
DOI: 10.1002/cepa.2204
Abstrait:

In Japan, bridge inspections are compulsorily performed in 5‐year cycles. With the institutionalization of the inspection cycle, essential data have been continuously accumulated. However, effective data utilization requires trend analysis and causal analysis for a group of bridges. In this study, a method for determining factors affecting deterioration is established. The analysis is performed for concrete and steel bridges with Bayesian networks by utilizing data on bridge inspection and repair, and open data such as traffic census and rainfall. For concrete and steel bridges, the target members are the deck slab and main structural members, whereas the damage type is “Delamination/rebar exposure” and “corrosion,” respectively. The validity of the selected explanatory variables is verified by crossvalidation using separately prepared test data; evidently, the maximum damage rating prediction accuracy is 86%. Furthermore, the influencing factors extracted in this study are reasonable for the two damages, thus indicating the possibility of probabilistically extracting influencing factors for specific damages by Bayesian networks.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/cepa.2204.
  • Informations
    sur cette fiche
  • Reference-ID
    10767270
  • Publié(e) le:
    17.04.2024
  • Modifié(e) le:
    17.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine