Identification of Civil Infrastructure Damage Using Ensemble Transfer Learning Model
Auteur(s): |
A. Shamila Ebenezer
S. Deepa Kanmani V. Sheela K. Ramalakshmi V. Chandran M. G. Sumithra B. Elakkiya Bharani Murugesan |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-13 |
DOI: | 10.1155/2021/5589688 |
Abstrait: |
This article uses cutting-edge deep learning technology to identify structural damage from images for a civil engineering application. The public infrastructures of the country are generally inspected physically by a visual evaluation by qualified inspectors. However, manual inspections are pretty time-consuming and often require too much labor. The number of experts capable of evaluating such structural damage is inadequate. As a result, computer vision-based techniques for automatic damage detection have been developed. This paper’s civil infrastructure damages are classified into four damages of roads common in Indian highways and the concrete deterioration in the bridges. The convolutional neural network has become a standard tool for organizing and recognizing images. In this paper, an ensemble of three CNN models is proposed, and two are transfer learning-based models. The proposed ensemble transfer learning model provided a validation accuracy of 87.1%. |
Copyright: | © A. Shamila Ebenezer et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.64 MB
- Informations
sur cette fiche - Reference-ID
10638342 - Publié(e) le:
30.11.2021 - Modifié(e) le:
17.02.2022