0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Hygrothermal Performance of Bio-Based Exterior Wall Constructions and Their Resilience under Air Leakage and Moisture Load

Auteur(s):
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 10, v. 13
Page(s): 2650
DOI: 10.3390/buildings13102650
Abstrait:

The use of renewable building materials in construction is crucial to minimising the environmental impact of new buildings. Bio-based building materials have a wide range of positive properties, many of which are due to their hygroscopic behaviour. The purpose of this study is to investigate the hygrothermal performance of chopped straw, sheep’s wool, and cellulose insulated timber frame external wall assemblies in the presence of air leakage and high indoor relative humidity. For this purpose, tests with different moisture contents, overpressures, and defects in the airtight layer were carried out in an outdoor test stand over a period of 18 months. The results were compared with a conventional mineral wool insulated construction. Both sheep’s wool and cellulose are particularly fault-tolerant insulation materials in combination with timber frame constructions. All three bio-based insulations, despite defects in the airtight layer, showed no mould-prone moisture content. An installation level insulated with sheep’s wool can increase the fault tolerance of constructions with insulation made of hygric and more sensitive building materials. For chopped straw and cellulose, the measured U-value was lower than expected. Further in situ measurements of bio-based structures are important to gain confidence in their hygrothermal behaviour and to increase their use in multi-storey construction.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10744698
  • Publié(e) le:
    28.10.2023
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine