Hydrodynamic Performance and Cavitation Analysis in Bottom Outlets of Dam Using CFD Modelling
Auteur(s): |
Omid Aminoroayaie Yamini
S. Hooman Mousavi M. R. Kavianpour Ramin Safari Ghaleh |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-14 |
DOI: | 10.1155/2021/5529792 |
Abstrait: |
Bottom outlets are significant structures of dams, which are responsible for controlling the flow rate, operation, or removal of reservoir sedimentation. The service gate controls the outlet flow rate, and whenever this gate is out of order, the emergency gate which is located at upstream is utilized. The cavitation phenomenon is one of the common bottom outlets’ problems due to the rapid flow transfer. The present research is a numerical study of the flow pattern in a dam’s bottom outlet for different gate openings by the use of Flow-3D software and RNG k-ε turbulence model. The investigation is carried out on the Sardab Dam, an earth dam in Isfahan (Iran). The maximum velocity for 100% opening of the gate and Howell Bunger valve is about 18 m/s in the section below the gate, and the maximum velocity for 40% opening of the gate is equal to 23.1 m/s. For 50% opening of the service and emergency gate in the valve’s upstream areas, the desired pressure values are reduced. Moreover, in the areas between the two emergency and service gates, the pressure values are reduced. The possibility of cavitation in this area can be reduced by installing aerators. The flow pattern in Sardab Dam’s bottom outlet has relatively stable and proper conditions, and there are no troublesome hydraulic phenomena such as local vortices, undesirable variations in pressure, and velocity in the tunnel, and there is no flow separation in the critical area of flow entering into the branch. |
Copyright: | © 2021 Omid Aminoroayaie Yamini et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.97 MB
- Informations
sur cette fiche - Reference-ID
10608925 - Publié(e) le:
22.05.2021 - Modifié(e) le:
02.06.2021