A Hybrid Residential Short-Term Load Forecasting Method Using Attention Mechanism and Deep Learning
Auteur(s): |
Xinhui Ji
Huijie Huang Dongsheng Chen Kangning Yin Yi Zuo Zhenping Chen Rui Bai |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 13 janvier 2023, n. 1, v. 13 |
Page(s): | 72 |
DOI: | 10.3390/buildings13010072 |
Abstrait: |
Development in economics and social society has led to rapid growth in electricity demand. Accurate residential electricity load forecasting is helpful for the transformation of residential energy consumption structure and can also curb global climate warming. This paper proposes a hybrid residential short_term load forecasting framework (DCNN-LSTM-AE-AM) based on deep learning, which combines dilated convolutional neural network (DCNN), long short_term memory network (LSTM), autoencoder (AE), and attention mechanism (AM) to improve the prediction results. First, we design a T-nearest neighbors (TNN) algorithm to preprocess the original data. Further, a DCNN is introduced to extract the long-term feature. Secondly, we combine the LSTM with the AE (LSTM-AE) to learn the sequence features hidden in the extracted features and decode them into output features. Finally, the AM is further introduced to extract and fuse the high-level stage features to achieve the prediction results. Experiments on two real-world datasets show that the proposed method is good at capturing the oscillation characteristics of low-load data and outperforms other methods. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
62.8 MB
- Informations
sur cette fiche - Reference-ID
10712476 - Publié(e) le:
21.03.2023 - Modifié(e) le:
10.05.2023