0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A hybrid prognosis model for predicting fatigue crack propagation under biaxial in-phase and out-of-phase loading

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 4, v. 17
Page(s): 888-901
DOI: 10.1177/1475921717725019
Abstrait:

A hybrid prognosis model has been developed to predict the crack propagation in aluminum alloys subject to biaxial in-phase and out-of-phase fatigue loading conditions. The novel methodology combines physics-based modeling with machine learning techniques to predict crack growth in aluminum alloys. Understanding the failure mechanisms under these complex loading conditions is critical to developing reliable prognostic models. Therefore, extensive fatigue tests were conducted to study the failure modes of carefully designed cruciform specimens. Energy release rate was used as the physics-based parameter and Gaussian process was used to model the complex nonlinear relationships in the prognosis framework. The methodology was used to predict crack propagation in Al7075-T651 under a range of loading conditions. The predictions from the prognosis model were validated using the data obtained from the biaxial tests. The results indicate that the algorithm is able to accurately predict the crack propagation under proportional, non-proportional, in-phase, and out-of-phase loading conditions.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921717725019.
  • Informations
    sur cette fiche
  • Reference-ID
    10562093
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine