0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Hybrid Predictive Maintenance for Building Systems: Integrating Rule-Based and Machine Learning Models for Fault Detection Using a High-Resolution Danish Dataset

Auteur(s): ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 4, v. 15
Page(s): 630
DOI: 10.3390/buildings15040630
Abstrait:

This study evaluates the effectiveness of six machine learning models, Artificial Neural Networks (ANN), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Logistic Regression (LR), for predictive maintenance in building systems. Utilizing a high-resolution dataset collected every five minutes from six office rooms at Aalborg University in Denmark over a ten-month period (27 February 2023 to 31 December 2023), we defined rule-based conditions to label historical faults in HVAC, lighting, and occupancy systems, resulting in over 100,000 fault instances. XGBoost outperformed other models, achieving an accuracy of 95%, precision of 93%, recall of 94%, and an F1-score of 0.93, with a computation time of 60 s. The model effectively predicted critical faults such as “Light_On_No_Occupancy” (1149 occurrences) and “Damper_Open_No_Occupancy” (8818 occurrences), demonstrating its potential for real-time fault detection and energy optimization in building management systems. Our findings suggest that implementing XGBoost in predictive maintenance frameworks can significantly enhance fault detection accuracy, reduce energy waste, and improve operational efficiency.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10820860
  • Publié(e) le:
    11.03.2025
  • Modifié(e) le:
    11.03.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine