A Human Detection Approach for Intrusion in Hazardous Areas Using 4D-BIM-Based Spatial-Temporal Analysis and Computer Vision
Auteur(s): |
Si Van-Tien Tran
Doyeop Lee Quy Lan Bao Taehan Yoo Muhammad Khan Junhyeon Jo Chansik Park |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 23 août 2023, n. 9, v. 13 |
Page(s): | 2313 |
DOI: | 10.3390/buildings13092313 |
Abstrait: |
Detecting intrusion in hazardous areas is one of the priorities and duties of safety enhancement. With the emergence of vision intelligence technology, hazardous-area-detection algorithms can support safety managers in predicting potential hazards and making decisions. However, because of the dynamic and complex nature of the jobsite, high-risk zones have a different geometry and can be changed following the schedule and workspace of activity. This leads to hazardous areas being annotated manually. Thus, this study proposes a computer vision and a 4D BIM-based approach for intrusion detection in hazardous areas, called IDC4D. IDC4D comprises three modules: (1) the 4D BIM-based safety planning (4BSP) module, which analyzes the hazardous area; (2) the hazardous area registration (HAR) module, which delivers the hazardous area from the BIM model to the camera’s first frame image; and (3) the hazardous-area-intrusion-detection module (HAID), which applies the computer vision algorithm to identify the correlation between workers and hazardous areas. The efficiency of the IDC4D approach is validated by testing a maintenance project on the construction site. IDC4D supports the planner in choosing the plan and detecting the event of workers entering hazardous areas while working. It showed an average precision of 93% and 94% in phase 1 and phase 2, respectively. These findings provide insight into how varying geometries of diverse hazard areas can be handled for enhancing intrusion detection. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8 MB
- Informations
sur cette fiche - Reference-ID
10744450 - Publié(e) le:
28.10.2023 - Modifié(e) le:
07.02.2024