A global-local damage localization and quantification approach in composite structures using ultrasonic guided waves and active infrared thermography
Auteur(s): |
Kaleeswaran Balasubramaniam
Shirsendu Sikdar Dominika Ziaja Michał Jurek Rohan Soman Paweł Malinowski |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Smart Materials and Structures, 1 février 2023, n. 3, v. 32 |
Page(s): | 035016 |
DOI: | 10.1088/1361-665x/acb578 |
Abstrait: |
The paper emphasizes an effective quantification of hidden damage in composite structures using ultrasonic guided wave (GW) propagation-based structural health monitoring (SHM) and an artificial neural network (ANN) based active infrared thermography (IRT) analysis. In recent years, there has been increased interest in using a global-local approach for damage localization purposes. The global approach is mainly used in identifying the damage, while the local approach is quantifying. This paper presents a proof-of-study to use such a global-local approach in damage localization and quantification. The main novelties in this paper are the implementation of an improved SHM GW algorithm to localize the damages, a new pixel-based confusion matrix to quantify the size of the damage threshold, and a newly developed IRT-ANN algorithm to validate the damage quantification. From the SHM methodology, it is realized that only three sensors are sufficient to localize the damage, and an ANN- IRT imaging algorithm with only five hidden neurons in quantifying the damage. The robust SHM methods effectively identified, localized, and quantified the different damage dimensions against the non-destructive testing-IRT method in different composite structures. |
Copyright: | © 2023 Kaleeswaran Balasubramaniam, Shirsendu Sikdar, Dominika Ziaja, Michał Jurek, Rohan Soman, Paweł Malinowski |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
10.72 MB
- Informations
sur cette fiche - Reference-ID
10707677 - Publié(e) le:
21.03.2023 - Modifié(e) le:
07.02.2024