• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

FRP Composite in Mitigating Seismic Risk of RC Structures in Near-Fault Regions with/without Aftershocks

  1. (2000), "Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, earthquake of August 17, 1999" in Circular, US Geological Survey

    https://doi.org/10.3133/cir1193

  2. in European Earthquake Engineering, v. 3 (2000), p. 18
  3. "Preliminary report on the 2012, May 20, Emilia earthquake"
  4. Rahai, Alireza / Akbarpour, Hamed (2014): Experimental investigation on rectangular RC columns strengthened with CFRP composites under axial load and biaxial bending. Dans: Composite Structures, v. 108 (février 2014).

    https://doi.org/10.1016/j.compstruct.2013.09.015

  5. Van Cao, Vui / Ronagh, Hamid Reza (2014): Reducing the seismic damage of reinforced concrete frames using FRP confinement. Dans: Composite Structures, v. 118 (décembre 2014).

    https://doi.org/10.1016/j.compstruct.2014.07.038

  6. Mortezaei, A. / Ronagh, H. R. / Kheyroddin, A. (2010): Seismic evaluation of FRP strengthened RC buildings subjected to near-fault ground motions having fling step. Dans: Composite Structures, v. 92, n. 5 (avril 2010).

    https://doi.org/10.1016/j.compstruct.2009.10.017

  7. Eslami A. (2013), "Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing – A case study" in Composites Part B: Engineering, v. 45, n. 1, Elsevier BV, p. 1265-1274

    https://doi.org/10.1016/j.compositesb.2012.09.031

  8. Moustafa Abbas (2011), "Response of nonlinear single-degree-of-freedom structures to random acceleration sequences" in Engineering Structures, v. 33, n. 4, Elsevier BV, p. 1251-1258

    https://doi.org/10.1016/j.engstruct.2011.01.002

  9. Goda K. (2012), "Nonlinear Response Potential of Mainshock-Aftershock Sequences from Japanese Earthquakes" in Bulletin of the Seismological Society of America, v. 102, n. 5, Seismological Society of America (SSA), p. 2139-2156

    https://doi.org/10.1785/0120110329

  10. Goda Katsuichiro (2012), "Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes" in Earthquake Engineering & Structural Dynamics, Wiley, p. n/a-n/a

    https://doi.org/10.1002/eqe.2188

  11. Yang Fujian (2019), "Damage demands evaluation of reinforced concrete frame structure subjected to near-fault seismic sequences" in Natural Hazards, v. 97, n. 2, Springer Science and Business Media LLC, p. 841-860

    https://doi.org/10.1007/s11069-019-03678-1

  12. Mavroeidis G. P. (2003), "A Mathematical Representation of Near-Fault Ground Motions" in Bulletin of the Seismological Society of America, v. 93, n. 3, Seismological Society of America (SSA), p. 1099-1131

    https://doi.org/10.1785/0120020100

  13. Moustafa Abbas (2010), "Characterization and modeling of near-fault pulse-like strong ground motion via damage-based critical excitation method" in Structural Engineering and Mechanics, v. 34, n. 6, Techno-Press, p. 755-778

    https://doi.org/10.12989/sem.2010.34.6.755

  14. Galal K. (2006), "Effect of near-fault earthquakes on North American nuclear design spectra" in Nuclear Engineering and Design, v. 236, n. 18, Elsevier BV, p. 1928-1936

    https://doi.org/10.1016/j.nucengdes.2006.02.002

  15. Baker J. W. (2007), "Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis" in Bulletin of the Seismological Society of America, v. 97, n. 5, Seismological Society of America (SSA), p. 1486-1501

    https://doi.org/10.1785/0120060255

  16. Mollaioli Fabrizio (2006), "Characterization of the Dynamic Response of Structures to Damaging Pulse-type Near-fault Ground Motions" in Meccanica, v. 41, n. 1, Springer Science and Business Media LLC, p. 23-46

    https://doi.org/10.1007/s11012-005-7965-y

  17. "Experimental Study of Reinforced Concrete Bridge Columns Subjected to Near-Fault Ground Motions" in ACI Structural Journal, v. 107, n. 01, American Concrete Institute

    https://doi.org/10.14359/51663383

  18. in Earthquake Engineering and Engineering Seismology, v. 2 (2000), p. 93
  19. Cao Vui Van (2014), "Seismic risk assessment of deficient reinforced concrete frames in near-fault regions" in Advances in concrete construction, v. 2, n. 4, Techno-Press, p. 261-280

    https://doi.org/10.12989/acc.2014.2.4.261

  20. Ruiz-García Jorge (2011), "Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock–aftershock seismic sequences" in Engineering Structures, v. 33, n. 2, Elsevier BV, p. 621-634

    https://doi.org/10.1016/j.engstruct.2010.11.021

  21. Aki Keiiti (1984), "Asperities, barriers, characteristic earthquakes and strong motion prediction" in Journal of Geophysical Research: Solid Earth, v. 89, n. B7, American Geophysical Union (AGU), p. 5867-5872

    https://doi.org/10.1029/JB089iB07p05867

  22. Båth Markus (1965), "Lateral inhomogeneities of the upper mantle" in Tectonophysics, v. 2, n. 6, Elsevier BV, p. 483-514

    https://doi.org/10.1016/0040-1951(65)90003-X

  23. Shcherbakov R. (2004), "A Modified Form of Bath's Law" in Bulletin of the Seismological Society of America, v. 94, n. 5, Seismological Society of America (SSA), p. 1968-1975

    https://doi.org/10.1785/012003162

  24. in Bulletin of the Seismological Society of America, v. 34 (1944), p. 185
  25. Felzer Karen R. (2002), "Triggering of the 1999MW7.1 Hector Mine earthquake by aftershocks of the 1992MW7.3 Landers earthquake" in Journal of Geophysical Research: Solid Earth, v. 107, n. B9, American Geophysical Union (AGU), p. ESE 6-1-ESE 6-13

    https://doi.org/10.1029/2001JB000911

  26. Tahir M. (2012), "The largest aftershock: How strong, how far away, how delayed?" in Geophysical Research Letters, v. 39, n. 4, American Geophysical Union (AGU), p. n/a-n/a

    https://doi.org/10.1029/2011GL050604

  27. Chen Kou-Cheng (2012), "Correlations Between the Mainshock and the Largest Aftershock for Taiwan Earthquakes" in Pure and Applied Geophysics, v. 169, n. 7, Springer Science and Business Media LLC, p. 1217-1229

    https://doi.org/10.1007/s00024-011-0352-9

  28. in Journal of the Structural Division, v. 108 (1982), p. 929
  29. in Journal of the Structural Division, v. 96 (1970), p. 2557
  30. Lam L. (2003), "Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns" in Journal of Reinforced Plastics and Composites, v. 22, n. 13, SAGE Publications, p. 1149-1186

    https://doi.org/10.1177/0731684403035429

  31. Youssef Marwan N. (2007), "Stress–strain model for concrete confined by FRP composites" in Composites Part B: Engineering, v. 38, n. 5-6, Elsevier BV, p. 614-628

    https://doi.org/10.1016/j.compositesb.2006.07.020

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10427161
  • Publié(e) le:
    13.07.2020
  • Modifié(e) le:
    13.07.2020