0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Fracture mode classification of UHPC based on deep learning and wavelet time–frequency spectrum derived from acoustic emission waveform

Auteur(s): ORCID (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, State Key Laboratory of Bridge Engineering Safety and Resilience, Beijing University of Technology, Beijing, China)
(Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, State Key Laboratory of Bridge Engineering Safety and Resilience, Beijing University of Technology, Beijing, China)
(Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, State Key Laboratory of Bridge Engineering Safety and Resilience, Beijing University of Technology, Beijing, China)
(Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, State Key Laboratory of Bridge Engineering Safety and Resilience, Beijing University of Technology, Beijing, China)
Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring
DOI: 10.1177/14759217241287907
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/14759217241287907.
  • Informations
    sur cette fiche
  • Reference-ID
    10812092
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    17.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine