Fractal-Dimension-Based Walking Trajectory Analysis: A Case Study in Museum J. Armand Bombardier
Auteur(s): |
Xueying Han
Changhong Zhan Guanghao Li |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-7 |
DOI: | 10.1155/2021/9038686 |
Abstrait: |
A comprehensive understanding of the randomness, arbitrariness, and complexity of the visitors’ behavior and interaction in a museum is important because it is associated with the design. There is still uncertainty about how to characterize the visitors’ behavior and interaction. The fractal dimension was used in this study to indicate the geometrical form of the aged’s, the families’, and the students’ walking trajectories. The study results represented that all three sorts of the walking trajectory fractal-dimension-time curves fluctuated in the early stage. A remarkable exponential converges could then be observed. The mean fractal dimension after the convergence of the aged’s, the families’, and the students’ walking trajectory was nearly 1.8, 1.6, and 1.2, respectively. Furthermore, the behavior characteristics of these three sorts of visitors were quantified and the reasons were speculated and inferred. The comprehensive consideration of fractal geometry can aid in visitors’ behavior modeling and museum design. |
Copyright: | © Xueying Han et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.87 MB
- Informations
sur cette fiche - Reference-ID
10638285 - Publié(e) le:
30.11.2021 - Modifié(e) le:
17.02.2022