0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Forecasting Mechanical Properties of Steel Structures Through Dynamic Metaheuristic Optimization for Adaptive Machine Learning

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Civil Engineering and Management, , n. 5, v. 30
Page(s): 414-436
DOI: 10.3846/jcem.2024.21356
Abstrait:

Machine learning (ML) presents a promising method for predicting mechanical properties in structural engineering, particularly within complex nonlinear structures under extreme conditions. Despite its potential, research has shown a disproportionate focus on concrete structures, leaving steel structures less explored. Furthermore, the prevalent combination of metaheuristic optimization (MO) and ML in existing studies is often subjective, pointing to a significant gap in identifying and leveraging more effective hybrid models. To bridge these gaps, this study introduces a novel system named the Multiple Metaheuristic Optimizers – Multiple Machine Learners (MMOMML) system, designed for predicting mechanical strength in steel structures. The MMOMML system amalgamates 17 MO algorithms with 15 ML techniques, generating 255 hybrid models, including numerous novel configurations not previously examined. With a user-friendly interface, MMOMML enables structural engineers to tackle inference challenges efficiently, regardless of their coding proficiency. This capability is convincingly demonstrated through two practical applications: steel beams’ shear strength and steel cellular beams’ elastic buckling. By offering a versatile and robust tool, the MMOMML system meets construction engineers’ and researchers’ practical and research needs, marking a significant advancement in the field.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3846/jcem.2024.21356.
  • Informations
    sur cette fiche
  • Reference-ID
    10788252
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine