0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Flame Behaviour Comparison of Building Ceiling Composite using Combustion Calorimeter

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: IOP Conference Series: Materials Science and Engineering, , n. 1, v. 1107
Page(s): 012035
DOI: 10.1088/1757-899x/1107/1/012035
Abstrait:

This study determined the heat of combustion characteristics of selected building ceilings materials. The study was intending to appraise the flame affinity or retardance of building ceiling materials during combustion. Careful selection of ceiling composite was carried out in areas like Osun state, Ogun state, Lagos state, and Kaduna State. The heat of combustion was determined, having identified the heating value from the XRY-1C Oxygen Bomb Calorimeter. The heat flux and heat release rates were determined from the results of the combustion experiment. Based on the data obtained from the discrete experiments, the combustion integrity of the samples was appraised. Particleboard has the highest heat of combustion of 45.666J/kg, while asbestos failed to ignite. Other Polyvinyl chlorides (PVC) left ⩽ 0.0007kg of char after combustion and became deliquescent after long minutes of exposure to air. The heat release rate is highest with particleboard, 118.9219 J/s, and lowest with sample 7, 2.230 J/s. The study thus establishes that PVC is safer in terms of combustion properties compared to plant-based building ceilings. Asbestos has the overall most reliable properties, but for asbestosis, its use isn’t safe for use. It is necessary to develop building ceilings with flame retardant characteristics of asbestos as an alternative to it.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1757-899x/1107/1/012035.
  • Informations
    sur cette fiche
  • Reference-ID
    10674713
  • Publié(e) le:
    18.06.2022
  • Modifié(e) le:
    18.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine