0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Fiber Reinforced Polymer Culvert Bridges—A Feasibility Study from Structural and LCC Points of View

Auteur(s): ORCID




Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 9, v. 6
Page(s): 128
DOI: 10.3390/infrastructures6090128
Abstrait:

Soil–steel composite bridges (SSCB) have become increasingly popular for short_span bridges as an alternative to concrete slab bridges mainly due to their low initial cost, rapid manufacture, simplified construction, and geometrical adaptability. SSCBs have a variety of applications and can be used over waterways or roadways. While conventional bridges tend to lose their load-carrying capacity due to degradation, SSCBs gain strength because of backfill soil consolidation. However, the load carrying capacity and integrity of such structures highly depends on the condition and load-carrying capacity of the steel arch element. A major drawback of SSCBs, especially those located on waterways or with poor drainage, is corrosion and subsequent loss of cross-sectional capacity. Unfortunately, the inspection of such bridges is not straightforward and any damage/collapse will be very costly to repair/replace. Fiber reinforced polymer (FRP) composites offer an attractive alternative to replace the steel in these types of bridges. FRP composites have significantly improved durability characteristics compared to steel, which will reduce maintenance costs and improve life-cycle costs (LLCs). This paper presents a new concept to use glass FRP as a construction material to construct soil–FRP composite bridges (SFCB). Various aspects of design and manufacturing are presented along with results and conclusions from a case study involving alternative bridge designs in steel and FRP composites.

Copyright: © 2021 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10722999
  • Publié(e) le:
    22.04.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine