Feature-Based Deep Learning Classification for Pipeline Component Extraction from 3D Point Clouds
Auteur(s): |
Zhao Xu
Rui Kang Heng Li |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 5 juillet 2022, n. 7, v. 12 |
Page(s): | 968 |
DOI: | 10.3390/buildings12070968 |
Abstrait: |
This paper proposes a novel method for construction component classification by designing a feature-based deep learning network to tackle the automation problem in construction digitization. Although scholars have proposed a variety of ways to achieve the use of deep learning to classify point clouds, there are few practical engineering applications in the construction industry. However, in the process of building digitization, the level of manual participation has significantly reduced the efficiency of digitization and increased the application restrictions. To address this problem, we propose a robust classification method using deep learning networks, which is combined with traditional shape features for the point cloud of construction components. The proposed method starts with local and global feature extraction, where global features processed by the neural network and the traditional shape features are processed separately. Then, we generate a feature map and perform deep convolution to achieve feature fusion. Finally, experiments are designed to prove the efficiency of the proposed method based on the construction dataset we establish. This paper fills in the lack of deep learning applications of point clouds in construction component classification. Additionally, this paper provides a feasible solution to improve the construction digitization efficiency and provides an available dataset for future work. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.88 MB
- Informations
sur cette fiche - Reference-ID
10688488 - Publié(e) le:
13.08.2022 - Modifié(e) le:
10.11.2022