0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Feasibility of eolian sound for urban wind speed estimation

Auteur(s):
ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Japan Architectural Review, , n. 1, v. 7
DOI: 10.1002/2475-8876.12424
Abstrait:

Wind‐speed measurement is crucial in designing wind‐resistant buildings and controlling the wind environment in urban areas. However, the current methods of measuring wind speed, such as anemometers and Doppler lidar, are associated with high costs. This study investigated an alternative approach to measuring wind speed using the eolian sound emitted from cylindrical objects in urban settings, such as electrical cables. The proposed method relies on a relationship between the frequency of Karman vortex generation, which gives rise to eolian sound, and wind speed, considering the diameter of a cylindrical object. This study addressed 2 research questions: (1) the possibility of capturing and identifying the eolian sound emitted from a cylindrical object using a generic recording device and whether the peak frequency of the recorded sound aligns with the theoretically predicted frequency; (2) the feasibility of estimating the direction of the eolian sound source to identify the object responsible for the sound emission. The authors conducted a series of experiments involving artificially generated eolian sound in an outdoor environment and analyzed the recorded sound signals. The analysis results were encouraging, confirming positive responses to both research questions. These results indicate the potential for a novel method capable of estimating wind speed.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/2475-8876.12424.
  • Informations
    sur cette fiche
  • Reference-ID
    10754511
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    14.01.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine