0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Failure Mode Identification and Shear Strength Prediction of Rectangular Hollow RC Columns Using Novel Hybrid Machine Learning Models

Auteur(s): ORCID
ORCID

ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 13
Page(s): 2914
DOI: 10.3390/buildings13122914
Abstrait:

Failure mode identification and shear strength prediction are critical issues in designing reinforced concrete (RC) structures. Nevertheless, specific guidelines for identifying the failure modes and for accurate predictions of the shear strength of rectangular hollow RC columns are not provided in design codes. This study develops hybrid machine learning (ML) models to accurately identify the failure modes and precisely predict the shear strength of rectangular hollow RC columns. For this purpose, 121 experimental results of such columns are collected from the literature. Eight widely used ML models are employed to identify the failure modes and predict the shear strength of the column. The moth-flame optimization (MFO) algorithm and five-fold cross-validation are utilized to fine-tune the hyperparameters of the ML models. Additionally, seven empirical formulas are adopted to evaluate the performance of regression ML models in predicting the shear strength. The results reveal that the hybrid MFO-extreme gradient boosting (XGB) model outperforms others in both classifying the failure modes (accuracy of 93%) and predicting the shear strength (R2 = 0.996) of hollow RC columns. Additionally, the results indicate that the MFO-XGB model is more accurate than the empirical models for shear strength prediction. Moreover, the effect of input parameters on the failure modes and shear strength is investigated using the Shapley Additive exPlanations method. Finally, an efficient web application is developed for users who want to use the results of this study or update a new dataset.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10753533
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine