0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Failure mode and load prediction of steel bridge girders through 3D laser scanning and machine learning methods

Auteur(s):






Médium: article de revue
Langue(s): anglais
Publié dans: ce/papers, , n. 3-4, v. 7
Page(s): 198-203
DOI: 10.1002/cepa.3088
Abstrait:

Corrosion poses a significant threat to the longevity of steel bridges, impacting overall structural integrity. To effectively assess the structural condition of corroded steel bridges, conventional methods rely on visual inspections or single point measurements. To enhance and modernize this approach, this study introduces a novel framework integrating laser scanning data, computational models, and convolutional neural networks (CNNs). The CNN models are trained on a data set consisting of more than 1400 artificial corrosion scenarios generated by parameterizing real scan data from naturally corroded girders. This innovative method predicts the residual capacity and failure mode of corroded beam ends, achieving a low error rate of up to 3.3%. Unlike established evaluation procedures, the proposed evaluation framework directly utilizes post‐processed laser scanner output, eliminating the need for feature extraction and calculations.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/cepa.3088.
  • Informations
    sur cette fiche
  • Reference-ID
    10799219
  • Publié(e) le:
    23.09.2024
  • Modifié(e) le:
    23.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine