The Factors Influencing Safety Compliance Behavior Among New-Generation Construction Workers in China: A Safety Compliance Behavior–Artificial Neural Network Model Approach
Auteur(s): |
Meining Yuan
Tianpei Tang Shengnan Zhao Xiaofan Xue Bang Luo |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 18 décembre 2024, n. 12, v. 14 |
Page(s): | 3774 |
DOI: | 10.3390/buildings14123774 |
Abstrait: |
Amid an aging workforce and labor shortages, this study investigates the key factors influencing construction workers’ safety compliance behavior (SCB). SCB is categorized into three distinct types: non-compliance behavior, general behavior, and compliance behavior. The study compares and analyzes the differences in influencing factors between the new generation and older generation of construction workers. By integrating the SCB framework with a multi-layer perceptron (MLP) model, this research develops a safety compliance behavior–artificial neural network (SCB-ANN) model. An enhanced method for optimizing connection weight (CW) is applied to identify the key determinants of SCB. The findings reveal that the SCB-ANN model offers superior predictive accuracy compared to a standard MLP model. Additionally, the refined CW method significantly improves the neural network’s interpretability. The analysis shows that organizational factors have a stronger influence on the new generation of construction workers (NGCWs), while individual factors play a more crucial role for the older generation (OGCWs). As a result, the study proposes tailored safety management measures for different worker groups to mitigate non-compliance behaviors, providing a robust foundation for future research and the development of safety management strategies. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.06 MB
- Informations
sur cette fiche - Reference-ID
10810440 - Publié(e) le:
17.01.2025 - Modifié(e) le:
17.01.2025