Exploring Optimisation Pathways for Underground Space Quality Under the Synergy of Multidimensional Perception and Environmental Parameters
Auteur(s): |
Tianning Yao
Liang Sun Lin Geng Yao Xu Ziqi Xu Kuntao Hu Xing Chen Pan Liao Jin Wang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 15 janvier 2025, n. 2, v. 15 |
Page(s): | 204 |
DOI: | 10.3390/buildings15020204 |
Abstrait: |
With the acceleration of urbanisation and the increased utilisation of underground space, providing a comfortable and healthy environment in public underground areas has emerged as a significant research topic. This study constructs a comprehensive decision-making framework for underground space environments by integrating human perception evaluations with physical environmental parameters. Using Shanghai Wujiaochang as a case study, field data collection and questionnaire surveys were conducted to evaluate key factors such as temperature (22.63 °C–26.39 °C), wind speed (0.26 m/s–0.67 m/s), and sound levels (59.68 dB–61.21 dB) for commercial-oriented spaces, and 63.15 dB–75.45 dB for transport-oriented spaces) to users’ perceived experiences. The appropriate ranges for key parameters were identified through single-indicator fitted regression analysis and the XGBoost machine-learning model, revealing the relationship between environmental parameters and human perception. The results indicated significant differences in user needs across various functional spaces, with commercial-oriented areas emphasising environmental attractiveness and comfort, while transport-oriented spaces prioritised access efficiency and safety. This study provided quantitative design benchmarks for underground spaces’ dynamic regulation and sustainable management, proposing a precise and adaptive environmental decision-making framework that combines physical parameters with user-perception feedback. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
9.38 MB
- Informations
sur cette fiche - Reference-ID
10816098 - Publié(e) le:
03.02.2025 - Modifié(e) le:
03.02.2025