0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Explainable Artificial Intelligence for Ancient Architecture and Lacquer Art

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 5, v. 13
Page(s): 1213
DOI: 10.3390/buildings13051213
Abstrait:

This research investigates the use of explainable artificial intelligence (XAI) in ancient architecture and lacquer art. The aim is to create accurate and interpretable models to reveal these cultural artefacts’ underlying design principles and techniques. To achieve this, machine learning and data-driven techniques are employed, which provide new insights into their construction and preservation. The study emphasises the importance of transparent and trustworthy AI systems, which can enhance the reliability and credibility of the results. The developed model outperforms CNN-based emotion recognition and random forest models in all four evaluation metrics, achieving an impressive accuracy of 92%. This research demonstrates the potential of XAI to support the study and conservation of ancient architecture and lacquer art, opening up new avenues for interdisciplinary research and collaboration.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10728002
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine