0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Explainable AI models for predicting liquefaction-induced lateral spreading

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Frontiers in Built Environment, , v. 10
DOI: 10.3389/fbuil.2024.1387953
Abstrait:

Earthquake-induced liquefaction can cause substantial lateral spreading, posing threats to infrastructure. Machine learning (ML) can improve lateral spreading prediction models by capturing complex soil characteristics and site conditions. However, the “black box” nature of ML models can hinder their adoption in critical decision-making.

Method: This study addresses this limitation by using SHapley Additive exPlanations (SHAP) to interpret an eXtreme Gradient Boosting (XGB) model for lateral spreading prediction, trained on data from the 2011 Christchurch Earthquake.

Result: SHAP analysis reveals the factors driving the model's predictions, enhancing transparency and allowing for comparison with established engineering knowledge. Notably, the SHAP values expose an unexpected behavior in the PGA feature. Moreover, the results demonstrate that the XGB model successfully identifies the importance of soil characteristics derived from Cone Penetration Test (CPT) data in predicting lateral spreading, validating its alignment with domain understanding.

Discussion: This work highlights the value of explainable machine learning for reliable and informed decision-making in geotechnical engineering and hazard assessment.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3389/fbuil.2024.1387953.
  • Informations
    sur cette fiche
  • Reference-ID
    10789910
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine