0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental Verification of the Statistical Time-Series Methods for Diagnosing Wind Turbine Blades Damage

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 1, v. 19
Page(s): 1940008
DOI: 10.1142/s021945541940008x
Abstrait:

This paper presents an experimental verification of the statistical time-series methods, which utilize adapted frequency response ratio (FRR), autoregressive (AR) model parameter and AR model residual as performance characteristics, for diagnosing the damage of wind turbine blades. Specifically, the statistical decision-making techniques are used to identify the status patterns from turbine vibration data. For experiments, a small-size, laboratory-used operating wind turbine structure is used. The performance of each method in diagnosing damages simulated by saw cut in three critical positions in the blade are assessed and compared. The experimental results show that these methods yielded a promising damage diagnosis capability in the condition monitoring of wind turbine.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s021945541940008x.
  • Informations
    sur cette fiche
  • Reference-ID
    10352114
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine