0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental Study on the Mechanical Behavior of Yunnan Limestone in Natural and Saturated States

Auteur(s): ORCID
ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-16
DOI: 10.1155/2021/6614412
Abstrait:

Rock material is a kind of mineral assemblage with complex structural heterogeneity, whose mechanical behavior is strongly affected by water or moisture content. In this work, we carried out a series of laboratory tests to investigate the mechanical response (e.g., deformation, strength, and failure characteristics) of Yunnan limestone in natural and saturated states. Our test results show that (1) after saturation, the stiffness and strength of Yunnan limestone degenerate considerably. Compared with the natural condition, the elastic modulus, deformation modulus, and tensile modulus decrease by about 30% on average, and uniaxial compressive strength and tensile strength also decrease by about 15% and 20%, respectively. While Poisson’s ratio is less affected by water content, it can be regarded as a constant; (2) the elastic modulus and deformation modulus of Yunnan limestone are significantly affected by confining pressure, and the relationship between them and confining pressure satisfies the law of hyperbolic function; (3) the peak strength envelope of Yunnan limestone has significant nonlinear characteristics, which can be well described by generalized Hoek-Brown strength criterion. However, the generalized Hoek-Brown criterion does not apply to the residual strength, which shows a linearly increasing trend with the increasing confining pressure; (4) the failure modes of Yunnan limestone are significantly dependent on confining pressure but insensitive to water content. With the increasing confining pressure, the failure modes of Yunnan limestone transform from splitting failure, tension-shear mixed failure, single inclined plane shear failure to Y-shaped or X-shaped conjugated shear failure. The test results can provide important experimental data for the establishment of the constitutive model of Yunnan limestone, which will contribute to obtain more reliable results for stability assessment of Xianglu Mountain Tunnel.

Copyright: © 2021 Xutao Zhang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10578455
  • Publié(e) le:
    02.03.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine